Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation.
نویسندگان
چکیده
The maize p1 gene encodes an R2R3-MYB transcription factor that controls the biosynthesis of red flavonoid pigments in floral tissues of the maize plant. Genetic and quantitative trait locus analyses have also associated the p1 gene with the synthesis of maysin, a flavone glycoside from maize silks that confers natural resistance to corn earworm. Here, we show directly that the p1 gene induces maysin accumulation in silk tissues. Transformation of maize plants that had low or no silk maysin with p1 transgenes elevated silk maysin concentrations to levels sufficient for corn earworm abiosis. The p1 transgenes also conferred red pigment to pericarp, cob, husk and tassel tissues, as expected; however, different subsets of these tissues were pigmented within individual transgenic plants. Statistical analysis shows that the pigmentation patterns observed amongst the p1 transgenic plants conform to a hierarchy that is similar to the temporal ordering of floral organ initiation. We propose that the observed hierarchy of pigmentation patterns is conferred by variation due to epigenetic control of the p1 transgenes. The production of plants with improved traits through genetic engineering can depend in large part on the achievement of tight organ-specific expression of the introduced transgenes. Our results demonstrate that the production of transgenic plants using a promoter with well-defined tissue specificity, such as the p1 promoter, can result in unexpected variation in tissue specificity amongst the resulting transgenic plants.
منابع مشابه
Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross.
Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk...
متن کاملQuantitative trait loci and metabolic pathways (Zea mays L.yf lavonoidyf lavoneyinsect resistanceyHelicoverpa zea)
The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) bec...
متن کاملGenetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.).
C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm l...
متن کاملSilk Maysin Content and Resistance of Commercial Corn [ Maize ] Hybrids to Kernel Contamination by Aflatoxin
Several phenols and related compounds have been shown to have detrimental effects on insects while others have antibiotic activity against fungi which attack higher plants. Insects have also been implicated as contributors to preharvest contamination of corn [maize], Zea mays L, by aflatoxin. The objectives, therefore, were to determine (a) if commercial corn hybrids vary in their silk maysin c...
متن کاملField screening of experimental corn hybrids and inbred lines for multiple ear-feeding insect resistance.
Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant biotechnology journal
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2005